Ecosystems & Ecophysiology – Lecture 12

Thermal tolerance

Objectives

- 1. Know the lethal temperature as that at which 50% of a sample of organisms survive (T_{L50}).
- 2. Describe how the lethal temperature changes with acclimation temperature, to give a measure of the thermal niche of an organism.
- 3. Describe the three mechanisms of freeze resistance: by osmotic lowering of the freezing point; supercooling; and antifreeze molecules.
- 4. Understand freeze tolerance as an alternative to freeze resistance, and the limitation to extracellular fluids.
- 5. Describe the possible and probable mechanisms of heat death in organisms, and the protective action of heat shock proteins (Hsp).

Thermal tolerance

If an organism cannot regulate its T_b , then it has two problems:

- 1. Lethal extreme T_bs
- 2. Disturbance caused by T_b changes between the extremes (Lecture 13)

<u>Lethal temperature</u> is defined as that at which 50% of organisms die: T_{L50} , similar to LD_{50} tests on drugs. Found from plot of survival on temperature

 T_{L50} depends on <u>exposure time</u>, organisms may be killed by a long exposure to a temperature that they would survive for a short period, due to cumulative damage e.g. to enzymes

Upper T_{L50} of 4 species of barnacle <u>decrease</u> with longer exposure time, e.g. 35° C for 1 h but only 30° C for 6 h for *Balanus crenatus*

Use <u>biologically relevant</u> time – barnacles exposed at low tide for periods of several hours, when they are in danger of overheating

Prolonged exposure to less extreme temperatures usually <u>increases</u> tolerance, as organisms adjust to the new temperature. Acclimate = to experimental changes, acclimatise = to natural seasonal changes

High temperature survival curves for polychaete *Clymenella* acclimated to 5 or 15° C. <u>Upper</u> T_{L50} has increased by about 3° C in those acclimated to 15° C

Complete tolerance range – upper & lower T_{L50} for each acclimation temperature. Fundamental (rather than realised) <u>thermal niche</u>, breadth can be expressed as the area of each polygon ($^{\circ}C^{2}$)

Bullhead (*Ictalurus* catfish) has much <u>broader</u> thermal niche than salmon. Bullhead is eurythermal, salmon is stenothermal

Low temperatures

Many ectotherms adapted to survive & even function normally at low T_b . Some <u>tropical</u> species less tolerant of low T_b , especially aquatic species

Guppy *Lebistes* acclimated to 23°C has a <u>lower</u> T_{L50} of only 10°C. Similar in tropical cichlids including *Oreochromis niloticus* & *O. alcalicus* (also10°C)

Mechanisms of cold death at such moderate temperatures are poorly understood. Main danger from low temperature is <u>freezing</u>

<u>Aquatic ectotherms</u> experience only moderate low T_a as water freezes between 0 and $-2^{\circ}C$ (depending on salinity). High latent heat of fusion resists further temperature change

Terrestrial (& <u>intertidal</u>) ectotherms more susceptible to freezing as T_a can fall well below 0. Two main adaptations, freeze resistance & freeze tolerance

Freeze resistance

Organism does not freeze, and may be <u>active</u> at low temperature. Usually aquatic. 3 mechanisms:

1. Osmotic lowering of freezing point. Pure water freezes at 0°C. Freezing point (FP) is <u>lowered</u> by solutes, according to the equation Δ **FP** = -**1.86 O**. O is the osmolal concentration; sw has O = 1 so freezes at -1.86°C

FP depression is thus directly proportional to <u>solute concentration</u>. First mechanism of freeze resistance is just to increase body fluid concentration

Normal body fluid concentration of organisms gives protection against freezing in fw. Their FP is -0.6 to -0.7° C so they will freeze <u>after</u> all the surrounding water, & are protected by its latent heat of fusion

However, body fluids of marine organisms are typically less concentrated than sw, so they are in danger of freezing <u>before</u> the surrounding water

Some ectotherms accumulate high concentrations of specific solutes to lower their FP, typically:

- 1. Sugars glucose, fructose, trehalose
- 2. <u>Sugar alcohols</u> glycerol, sorbitol

These have low molecular weights so maximum osmotic effect & FP depression g⁻¹ solute (depends on number of <u>molecules</u>, not mass)

Increased concentration of solutes in *Eurosta* fly larva at lower T_a . Glycogen is split to <u>glycerol</u> (first) then sorbitol, to lower the FP. Note glycogen shown as glucose units – concentration much lower as polymer

2. Supercooling. Pure water & solutions do not necessarily freeze at the FP calculated from their osmotic concentration. May remain liquid when cooled below the FP – the <u>supercooled</u> state, down to supercooling point SP

For this reason FP (liquid \rightarrow solid) in practice is <u>measured</u> as the melting point MP (solid \rightarrow liquid), as MP always corresponds to the osmotic concentration

Supercooling is <u>general property</u> of solutions & tissues. Solutes lower FP & also SP, but unclear whether solutes are actually involved in supercooling

Depends on the absence of <u>ice crystals</u>, which seed further ice growth. A supercooled liquid (or organism) will freeze if it comes into contact with ice

Examples of supercooling points (°C) & solute concentrations:

	SP	Solute	
Rana (frog)	-3.0	Glucose	0.41 M
Chrysemys (turtle)	-3.3	Amino acids	0.05 M
Trichiocampus (sawfly)	-8.6	Trehalose	9.0%
Rhabdophaga (midge)	-49.1	Glycerol	32.4%
Pytho (beetle)	-54.0	Glycerol, sugars	13.2%, 5.5%

Only moderate supercooling in the vertebrates, more in invertebrates. <u>No advantage in fw</u> as body fluid FP is below that of water anyway

■ But useful for <u>marine</u> organisms, which would normally freeze at above –1.86°C. If SP is below –1.86°C, marine organisms will not freeze as along as they do not contact ice

Benthic fish in <u>arctic</u> fjords have FP of -0.7° C but live in permanently supercooled condition. No bottom ice so safe, with behaviour to avoid the surface. If tissues contact ice crystals they freeze immediately (& fatally)

There is some bottom ice in <u>Antarctic</u>. Anchor ice, small plates form on bottom down to 30 m, lift off when low density overcomes adhesion. Antarctic benthic fish therefore use a different strategy:

3. Antifreeze molecules. Antarctic fish show a difference between freezing & melting points. $FP = -2.7^{\circ}C$, $MP = -0.9^{\circ}C$. This FP low enough to give <u>complete protection</u> against freezing in sw

Similar difference between FP & MP in supercooling, but <u>not supercooling</u> as they do not freeze when contact ice. Have antifreeze molecules

These are <u>non-colligative</u> solutes, i.e. their action is not proportional to concentration, & much greater than other solutes (e.g. NaCl, glucose)

- a) <u>Glycoproteins</u>. Polymers of up to 50 tripeptide groups Alanine-Alanine-Threonine linked to carbohydrate, MW 2,600 to 33,000
- b) <u>Proteins</u>. More variable structure, 3 general types. Sculpin fish *Myxocephalus* has α -helix with many alanine, MW 3,300-4,000

Both types work by having a high concentration of <u>polar groups</u>, strongly interact with ice crystals. Bind to ice nuclei & prevent further water molecules being added, stopping ice growth

Freeze tolerance

The other main strategy, organisms can <u>freeze but survive</u>. Must be inactive, typically terrestrial invertebrates dormant in winter

Tolerate freezing of <u>part</u> of the body water without tissue damage:

Frogs & turtles survive	
Intertidal molluscs	
Insects	

35-50% body water frozen 54-76% >90%

Survivable freezing is limited to the <u>extracellular</u> fluid. Cells become shrunk & distorted, but do not contain ice crystals. Animal dies if ice forms intracellularly as this disrupts membranes & organelles

As temperature drops & extracellular fluid freezes, the solutes in it are frozen out of the ice, <u>concentrated</u> in the unfrozen liquid

<u>Lowers the FP</u> of the remaining extracellular fluid, harder to freeze. Gives curve of increasing % of body water frozen with decreasing temperature

Increasing concentration of extracellular fluid also draws water from the cells by osmosis. So freeze-tolerant animals must also be very tolerant of <u>dehydration</u> – more than desert animals

Seasonal change of freeze-tolerance in molluscs is due to tolerance of tissue dehydration. <u>0°C acclimated</u> mussels *Modiolus* tolerate an extra 6% of body water being frozen, giving another 2°C of freeze tolerance:

Acclimation temperature	Water frozen	Lethal temperature
23°C	35%	$-7^{\circ}C$
0	41	-9

Can test this by acclimating the mussels to water of different <u>salinity</u>. Mussels from hypersaline water show greater freeze tolerance, as predicted:

Acclimation salinity	Lethal temperature
12	-5°C
34	-10
46	-12

High temperatures

Larvae of the chironomid *Polypedilum* live in shallow exposed pools on rocks in Uganda. Survive total dehydration, & heating to 102°C in this state

Fw crustacean *Triops* from Sudan aestivates in <u>dry mud</u> which can reach 80°C in the sun. In the lab they can survive heating to 99°C

Upper lethal temperatures of <u>fish</u> range from 43°C for the desert pupfish *Cypriodon*, in warm desert pools in the USA, down to only 6°C for the Antarctic fish *Trematomus*, lives at -1.86°C

In general the upper lethal temperature of a species is related to the maximum temperatures in the environment. <u>Correlation</u> for 19 spp of porcelain crabs *Petrolisthes*

This is an example of evolutionary (genetic) <u>adaptation</u>, not phenotypic change as in acclimation or acclimatisation

Also shown by position on shore in <u>intertidal gastropods</u>. Upper T_{L50} (°C):

Spray zone & upper intertidal	47-48.5
Middle intertidal	44-46
Lower intertidal	42-43
Infralittoral fringe	39

<u>Aquatic organisms</u> are often very stenothermal as they never experience high temperatures, so no selection pressure for resistance. Heat death from El Nino events in corals & kelp

Mechanisms of heat death

Less known about high temperature mortality than cold & freezing. Major cause in terrestrial animals is <u>dehydration</u>, especially where evaporative cooling used. Apart from water loss there are 5 suggested mechanisms:

1. <u>Protein denaturation</u> – permanent loss of function of enzymes. Possible where T_{L50} is 45-50°C, but hardly for *Trematomus* at 6°C

2. <u>Thermal inactivation</u> – reversible loss of enzyme activity faster than synthesis. May occur in some cases, but again not a general mechanism. Isolated enzymes of *Trematomus* increase activity to 30°C

3. <u>Failure of oxygen supply</u>. Can be disproved by increasing the partial pressure of oxygen, has no effect on lethal temperatures

4. <u>Failure of metabolic regulation</u>. Consider the reaction pathways in the diagram. If C \rightarrow D increases faster than B \rightarrow C at higher temperature, then C will be depleted & C \rightarrow E may not occur at all

Several hundred enzymes involved in metabolism, not all with the same Q_{10} , so a <u>probable</u> mechanism

5. <u>Loss of membrane function</u>. Cell membranes are lipid bilayer with attached proteins, held together by weak interactions of several types, all changed by temperature. Also a probable mechanism

Tolerance of high temperature

All organisms have <u>molecular chaperones</u>, proteins that allow other proteins to fold correctly in the cell, & restore shape when denatured

Some of these are heavily synthesised after heat stress, known as <u>heat shock</u> <u>proteins</u> (Hsp). Named by molecular weight, Hsp70 is 70,000 da. Look at effects on a denatured (unfolded) protein in vitro:

1. If Hsp70 + co-chaperone + ATP present, protein refolds to original state

2. If only Hsp70 or Hsp90, forms complex that prevents further unfolding, <u>maintenance state</u>, can re-fold later

3. If neither present, denatured protein can aggregate with other proteins, e.g. bovine serum albumin BSA in the lab. <u>Refractory</u> to re-folding, even when all other factors present

Hsp70 binds at <u>hydrophobic sites</u> of unfolded protein, shields them from interacting with other unfolded proteins. Releases protein when ATP split, allows it to re-fold

Heat shock response is increased synthesis of Hsp. Does not occur in Antarctic fish e.g. *Trematomus*, lost in 14 m years constant conditions

Bacteria synthesise Hsp within <u>minutes</u> of heat stress, multicellular organisms slower. Production of Hsp in gastropods, shocked by 2.5 h at 30°C:

Tegula brunnea, sublittoral, usually at 10-18°C, rarely > 25° C *T. funebralis* intertidal, often up to 32° C

T. funebralis <u>initiated</u> production more quickly (significant increase *), maximum rate of synthesis in 1 h, while *T. brunnea* took > 10 h

Heat shock response of *T. funebralis* <u>completed</u> within a few h (not significantly different from initial **), while *T. brunnea* unable to complete response within one tidal cycle (took 30-50 h)